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Abstract This paper studies the stability of the set containment problem. Given two non-
empty sets in the Euclidean space which are the solution sets of two systems of (possibly
infinite) inequalities, the Farkas type results allow to decide whether one of the two sets is
contained or not in the other one (which constitutes the so-called containment problem). In
those situations where the data (i.e., the constraints) can be affected by some kind of per-
turbations, the problem consists of determining whether the relative position of the two sets
is preserved by sufficiently small perturbations or not. This paper deals with this stability
problem as a particular case of the maintaining of the relative position of the images of
two set-valued mappings; first for general set-valued mappings and second for solution sets
mappings of convex and linear systems. Thus the results in this paper could be useful in the
postoptimal analysis of optimization problems with inclusion constraints.

Keywords Stability theory · Containment problem · Set-valued mappings · Semi-infinite
systems

AMS Classification 49K40 · 90C25 · 90C34

1 Introduction

The set containment problem consists of deciding, given two systems in R
n y0 and z0, whether

the corresponding solution sets, F0 and G0, satisfy F0 ⊂ G0 or not. A practical application
of this set containment problem is the design centering problem which considers a container
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set C ⊂ R
n and a parametrized body B (λ) ⊂ R

n , with parameter λ ∈ �. The idea is to
maximize some functional (e.g., the volume of B (λ)) on the set {λ ∈ � : B (λ) ⊂ C} (see
[13]); the problem of cutting a diamond with accepted form and maximal volume from a raw
diamond is an example. The multi-body design centering problem considers B (λ) to be a
finite union of non-overlapping bodies (with finitely many connected components). It is also
possible to consider the question about if, given λ̄ ∈ � such that B

(
λ̄
) ⊂ C , then B (λ) ⊂ C

for λ close enough to λ̄. When the sets C and B (λ) are described by inequality constraints

C = {
x ∈ R

n : cs (x) ≤ 0, s ∈ S
}

and

B (λ) = {
x ∈ R

n : b j (x) ≤ 0, j ∈ J ; ωλ (x) ≤ 0
}

for some sets of indexes S and J , while λ ∈ �, then one can pose the problem of studying
the stability of the inclusion B (λ) ⊂ C when some of the data

(
cs, b j , ωλ

)
are subject to

small perturbations.
Another application is the knowledge-based data classification problem: F0 represents

the knowledge set (which is fixed) whereas G0 belongs to a predetermined family of sets
from which the decision maker selects one of the best for a certain optimality criterion under
the condition that F0 ⊂ G0. This problem was posed in [4] (where F0 is a given convex
polyhedron and G0 is required to be a half-space) and extended by Mangasarian, Jeyakumar
et al. to more general situations: in [10] and [11], where F0 and G0 are solution sets of
ordinary systems of differentiable constraints; in [8], which deals with ordinary convex sys-
tems and linear semi-infinite systems (in brief, LSISs) and, finally, in [5], where also convex
semi-infinite systems (CSISs) are considered. The last paper considers the stable contain-
ment problem for LSISs, i.e., deciding whether the inclusion of solution sets of such kind of
systems is preserved by sufficiently small perturbation of the coefficients.

This paper extends the stable containment problem to CSISs, to general semi-infinite
systems and even to arbitrary set-valued mappings.

More in detail, we consider given two set-valued mappings F : Y ⇒ R
n and G : Z ⇒ R

n ,
where (Y, ρY ) and (Z , ρZ ) are pseudometric spaces and a couple (y0, z0) ∈ Y × Z .

We say that the containment F (y0) ⊂ G (z0) is stable (in brief, F ⊂ G stably) at (y0, z0)

if there exists ε > 0 such that F (y) ⊂ G (z) for all (y, z) ∈ Y × Z with ρY (y, y0) < ε and
ρZ (z, z0) < ε.

In the case of systems, we consider given y0 = {
f 0
t (x) ≤ 0, t ∈ T

}
and z0 = {

g0
s (x) ≤

0, s ∈ S
}
, where the index sets T and S are arbitrary and f 0

t , g0
s : R

n → R are bounded
functions on bounded sets, for all t ∈ T and for all s ∈ S. We denote by Y the class of all
systems of the form y = { ft (x) ≤ 0, t ∈ T } (i.e., those systems which have the same space
of variables, R

n , and the same index set, T ) and, in a similar way, the space of parameters
associated with z0, say Z . We will identify each system { ft (x) ≤ 0, t ∈ T } with its corre-
sponding set of data (functions) { ft }t∈T . In Sect. 3 below we define pseudometrics on the
parameter spaces Y and Z via these sets of data; these pseudometrics provide the uniform
convergence on T and S, respectively. So, in this paper systems of inequalities are view as
points in pseudometric spaces. In this context F and G will be the feasible set mappings, i.e.,
F (y) and G (z) are the solution sets of y = { ft (x) ≤ 0, t ∈ T } and z = {gt (x) ≤ 0, s ∈ S},
respectively.

We recall the stability concepts and some basic results for set-valued mappings that
we shall consider in this paper. Let F : Y ⇒ R

n be a set-valued mapping. Its domain
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is dom F := {y ∈ Y : F(y) �= ∅}. The following semicontinuity concepts are due to
Bouligand and Kuratowski (see [1, Sect. 1.4]).

We say that F is lower semicontinuous at y0 ∈ Y (lsc, in brief) if, for each open set
W ⊂ R

n such that W ∩ F(y0) �= ∅, there exists an open set V ⊂ Y , containing y0, such that
W ∩ F(y) �= ∅ for each y ∈ V . Obviously, F is lsc at y0 /∈ dom F and y0 ∈ int dom F if
F is lsc at y0 ∈ dom F .

F is upper semicontinuous at y0 ∈ Y (usc, in brief) if, for each open set W ⊂ R
n such

that F(y0) ⊂ W , there exists an open set V ⊂ Y , containing y0, such that F(y) ⊂ W for
each y ∈ V . Clearly, if F is usc at y0 /∈ dom F , then y0 ∈ int (Y\dom F).

If F is simultaneously lsc and usc at y0 we say that F is continuous at this point.
F is closed at y0 ∈ dom F if for all sequences {yr } ⊂ Y and {xr } ⊂ R

n satisfying
xr ∈ F(yr ) for all r ∈ N, yr → y0, and xr → x0, one has x0 ∈ F(y0). If F is usc at
y0 ∈ dom F and F(y0) is closed, then F is closed at y0. Conversely, if F is closed and
locally bounded at y0 ∈ dom F (i.e., if there are a neighborhood of y0, say V , and a bounded
set A ⊂ R

n containing F(y) for every y ∈ V ), then F is usc at y0.
F is lsc (usc, closed, locally bounded) if it is lsc (usc, closed, locally bounded) at y for all

y ∈ Y .
The boundary mapping of F is bd F : Y ⇒ R

n such that ( bd F) (y) = bd F (y) for all
y ∈ Y . (Here bd F (y) stands for the boundary of the set F (y)). In [7] it has been shown
that bd F is usc at y0 if F is usc at y0 and F (y) is the convex hull of bd F (y) for y close
to y0.

Other notions of lower and upper semicontinuity as lsc and usc in the sense of Hausdorff
(see, e.g., [2]) or inner and outer semicontinuity (see, e.g., [12], where it is shown that the
last two concepts are equivalent to lsc and closedness when F is closed-valued) will not be
considered in particular in this paper.

As an illustrative example, consider two particular instances of the design centering prob-
lem:

(a) Determining the greatest closed ball contained in C . Here Y = R
3 × R++ and, given

y = (y1, y2) ∈ Y y1 represents the center of the ball and y2 its radius.
(b) Determining the greatest object of a prescribed form (fixed by means of some compact

pattern set) contained in C . Now the decision variables are the position of the gravity
center (translation), the orientation of the selected axis (rotation), and the scale factor
(dilation), so that Y ⊂ R

7.

In both cases G is the constant mapping G (z) = C (for any pseudometric space Z ) and
both set-valued mappings, F and G, are obviously lsc, usc, and closed.

Finally, some additional notation: the Euclidean and the Tchebyshev norms in R
n are

denoted by ‖·‖ and ‖·‖∞, respectively. The Euclidean open ball centered at x and radius r > 0
is represented by B (x; r). 0n is the null vector in R

n . For any subsets A, B ⊂ R
n d (A, B)

denotes inf {‖x − y‖ : x ∈ A, y ∈ B}, with inf ∅ = +∞. If A is a subset of R
n int A and

clA represent the interior and the closure of A, respectively.
The paper is organized as follows. Section 2 deals with arbitrary set-valued mappings,

including conditions for F ⊂ G stably at (y0, z0), which involve semicontinuity properties
of F at y0 and G at z0, together with geometric conditions like F (y0) ⊂ int G (z0) or
d [F (y0) , bd G (z0)] > 0. Taking into account the generality of the set-valued mappings
considered in this section, it is not surprising that we need to impose several hypotheses in
order to get some sufficient or necessary conditions for the stability of the set containment.
Section 3 exploits the results developed in Sect. 2 for obtaining analogous properties for
semi-infinite systems. Since this section considers specially structured set-valued mappings
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by focussing the attention on the solution sets of CSISs and LSISs, the hypotheses discussed
in the previous section are now quite easy to state.

2 Set-valued mappings

Throughout this section we assume that F : Y ⇒ R
n and G : Z ⇒ R

n are two given
set-valued mappings, with (Y, ρY ) and (Z , ρZ ) pseudometric spaces, and (y0, z0) ∈ Y × Z .

We show in this section that, under suitable assumptions, d [F (y0) , bd G (z0)] > 0
implies that F ⊂ G stably at (y0, z0) whereas the latter property entails F (y0) ⊂ int G (z0).

Lemma 2.1 Let (y0, z0) ∈ Y × Z such that F (y0) ⊂ G (z0) and there exists an open
connected set U such that F (y0) ⊂ U ⊂ G (z0). Then

(i) d [U, bd G (z0)] > 0,
(ii) F is usc at y0,

(iii) G is lsc at z0, and
(iv) bd G is usc at z0,

imply that F ⊂ G stably at (y0, z0).

Proof If F (y0) = ∅, by (ii) we have F (y) = ∅ in a certain neighborhood of y0 . Thus we
assume that F (y0) �= ∅. If G (z0) = R

n and so bd G (z0) = ∅, by (iii) and (iv) G (z) = R
n

for z close enough to z0. In the following discussion we confine ourselves to the non-trivial
cases in which F (y0) �= ∅ and G (z0) �= R

n .
Let V := R

n\clU . Obviously, U ∩ V = ∅ and bd G (z0) ⊂ V by (i).
Since F (y0) ⊂ U , by (ii), there exists ε1 > 0 such that

F (y) ⊂ U if ρY (y, y0) < ε1. (2.1)

As ∅ �= F (y0) ⊂ G (z0) ∩ U and G is lsc at z0, there exists ε2 > 0 such that

G (z) ∩ U �= ∅ if ρZ (z, z0) < ε2. (2.2)

Because bd G (z0) ⊂ V and (iv) holds, there exists ε3 > 0 such that

bd G (z) ⊂ V if ρZ (z, z0) < ε3. (2.3)

Finally we prove that F (y) ⊂ G (z) if ρY (y, y0) < ε and ρZ (z, z0) < ε, for ε :=
min {ε1, ε2, ε3} . By (2.1), it is enough to show that U ⊂ G (z) for all z ∈ Z such that
ρZ (z, z0) < ε.

Let us assume the contrary, i.e., U � G (z). Take x1 ∈ U\G (z). By (2.2), we can take
also x2 ∈ G (z) ∩ U . Since U is an open connected set, there exists a continuous mapping
α : [0, 1] → U such that α (0) = x1 and α (1) = x2. Let

t := sup {t ∈ [0, 1] : α (t) ∈ G (z)} .

Then x3 := α
(
t
) ∈ [ bd G (z)] \V because U ∩ V = ∅, in contradiction with (2.3). 
�

Theorem 2.2 Let (y0, z0) ∈ Y × Z such that F (y0) ⊂ G (z0) and

(i) d [F (y0) , bd G (z0)] > 0,
(ii) F is usc at y0,

(iii) G is lsc at z0, and
(iv) bd G is usc at z0.
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Then, any of the following three conditions guarantees that F ⊂ G stably at (y0, z0):

(a) F (y0) is bounded.
(b) F (y0) has finitely many connected components.
(c) int G (z0) is a convex set.

Proof We assume F (y0) �= ∅. Take µ := 1
2 d [F (y0) , bd G (z0)].

First suppose that F (y0) is bounded. Consider the open bounded sets

U1 := F (y0) + B (0n;µ/2) ⊂ U2 := F (y0) + B (0n;µ) ⊂ int G (z0) .

Since F (y0) ⊂ U1 and bd G (z0) ⊂ V := R
n \ clU2, there exists ε > 0 such that

F (y) ⊂ U1 if ρY (y, y0) < ε

and

bd G (z) ⊂ V if ρZ (z, z0) < ε.

If U1 ⊂ G (z) for all z close enough to z0, then we are done. Otherwise, there exists a sequence
{zr } such that zr → z0 and U1 � G (zr ) for all r = 1, 2, . . .. Take xr ∈ U1\G (zr ) and assume
without loss of generality that xr → x̄ . Then x̄ ∈ clU1 ⊂ U2 and we may consider some
open ball B centered at x̄ contained in U2. Since B ∩ G (z0) �= ∅, condition (iii) implies
that B ∩ G (zr ) �= ∅ for r large enough. Let r0 be such that xr ∈ B, B ∩ G (zr ) �= ∅ and
bd G (zr ) ⊂ V for all r ≥ r0. The fact that B is connected yields a contradiction as in the
proof of the previous lemma.

Second assume that F (y0) is connected. The set U := F (y0) + B (0n;µ) is open and
connected. Since d [U, bd G (z0)] = µ > 0, Lemma 2.1 applies.

In the case that F (y0) has finitely many connected components, say Fi , i = 1, . . . , k, we
only need to replace ε2 in the proof of the previous lemma by ε2 = mini=1,...,k ηi , where
each ηi > 0 is such that G (z) ∩ (Fi + B (0n;µ)) �= ∅ if ρZ (z, z0) < ηi and consider an
appropriate connected component.

Finally we assume that int G (z0) is a convex set. The set

U := {x ∈ int G (z0) : d [x, bd G (z0)] > µ}
is open and satisfies F (y0) ⊂ U . Now we prove that U is convex. Let xi ∈ U, i = 1, 2. Since
int G (z0) is convex and B (xi ;µ) ⊂ int G (z0) i = 1, 2, we have

⋃

λ∈[0,1]

{(1 − λ) B (x1;µ) + λB (x2;µ)} ⊂ int G (z0) ,

so that d [(1 − λ) x1 + λx2, bd G (z0)] > µ for all λ ∈ [0, 1]. Hence [x1, x2] ⊂ U and
Lemma 2.1 applies again. 
�

Corollary 2.3 Let G be closed-convex-valued and let (y0, z0) ∈ Y × Z. If F (y0) is a closed
convex subset of int G (z0), G (z0) is bounded, F is usc at y0 and G is continuous at z0, then
F ⊂ G stably at (y0, z0).

Proof Under the assumptions G is locally bounded at z0, so that the convex hull of bd G
coincides with G in a certain neighborhood of z0. Thus bd G is continuous. On the other
hand, since F (y0) and bd G (z0) are disjoint compact sets, d [F (y0) , bd G (z0)] > 0. 
�
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Example 2.4 The next four cases show that none of the four conditions (i)–(iv) in Theorem
2.2 is superfluous. In all of them F and G are solution sets mappings corresponding to linear
systems in R

2 (so that they are closed-convex-valued). The sets Y and Z are endowed with
the usual topology in R.
(a) Let Y = Z = R++,

F (y) = {
x ∈ R

2 : −y ≤ xi ≤ y, i = 1, 2
}
,

G = F and y0 = z0 = 1. F (and so G) is continuous, so that (ii)–(iv) hold. Nevertheless
F (y) � G (z) if z < 1 < y.
(b) Let Y = Z = R+,

F (y) = {
x ∈ R

2 : x1 + yx2 ≥ 0,−x1 + yx2 ≥ 0
}
,

G (z) = {
x ∈ R

2 : −1 ≤ x1 ≤ 1
}

(constant) and y0 = z0 = 0. Now (i), (iii) and (iv) hold whereas F (y) � G (z0) if y > 0.
(c) Let Y = Z = R,

F (y) = {
x ∈ R

2 : −1 ≤ xi ≤ 1, i = 1, 2
}

(constant),

G (z) = {
x ∈ R

2 : −2 ≤ xi ≤ 2, i = 1, 2; 0′
2x ≤ z

}

and y0 = z0 = 0. Obviously, (i), (ii) and (iv) hold but F (0) = [−1, 1]2
� G (z) = ∅ if

z < 0.
(d) Let Y = Z = [0, 1] F (y) = {

x ∈ R
2 : xi ≥ 1, i = 1, 2

}
(constant),

G (z) = {
x ∈ R

2 : −x1 + zx2 ≤ 0, zx1 − x2 ≤ 0
}

and y0 = z0 = 0. It is easy to see that (i)–(iii) hold but F (y0) � G (z) if 0 < z < 1.

It is an open problem to know whether the alternative conditions (a), (b), (c) in Theorem
2.2 are superfluous or not.

In [6] it is shown the existence of consistent LSISs such that the solution set is constant
under arbitrary but sufficiently small perturbation of the coefficients (i.e., F is constant in
a certain neighborhood of y0), so we can have F ⊂ G stably at (y0, z0) and nevertheless
F (y0) � int G (z0) (take for instance G = F). The next result provides conditions guar-
anteeing that the inclusion F (y0) ⊂ int G (z0) is necessary for the stability of F ⊂ G at
(y0, z0). The intuitive meaning of such conditions are that F expands in the proximity of y0

and G shrinks inwards close to z0, respectively.

Condition A: F satisfies that for all closed half-space S such that F (y0) ⊂ S and bd S
supports F (y0), there exists a sequence {yr } ⊂ Y such that yr → y0 and

F (yr ) \ S �= ∅ for all r ∈ N.

Condition B: G satisfies that for all supporting hyperplanes to G (z0), say H , there exists
{zr } ⊂ Z such that zr → z0 and

G (zr ) ∩ H = ∅ for all r ∈ N.

Remarks 3.1 and 3.2 in Sect. 3 show sufficient conditions (related to an equilipschitzian
property) for Conditions A and B in the case of inequality systems. The following examples
illustrate them for parametric systems:
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Example 2.5 Let n = 2, Y = [1,+∞[ Z = ]0, 1] with the usual topology, y0 = z0 = 1,

F (y) = {
x ∈ R

2 : (cos t) x1 + (sin t) x2 ≤ y, 0 ≤ t ≤ 2π
}

and

G (z) = {
x ∈ R

2 : (cos t) x1 + (sin t) x2 ≤ z, 0 ≤ t ≤ 2π
}
.

Then F and G satisfy conditions A and B, respectively.

Example 2.6 Let M be the set of all symmetric positive definite matrices A of order n × n
and consider the set-valued mapping

E : M × R
n ⇒ R

n, E (A, b) = {
x ∈ R

n : ‖Ax + b‖ ≤ 1
}
.

Here E = E (A, b) is an ellipsoid. The two geometric problems in R
n of finding the Löwner-

John ellipsoid of a set C which is a minimum volume ellipsoid E such that C ⊂ E , and of
finding the center of a convex set C defined as the center of a maximum volume inscribed ellip-
soid are related to this mapping E ; actually E plays the role of G in the first problem and of F
in the second one. Consider M ×R

n with the Euclidean topology and let (A0, b0) ∈ M ×R
n .

If c′x = d, c �= 0n , is any supporting hyperplane H to E (A0, b0) with c′x ≤ d for any
x ∈ E (A0, b0), take x0 ∈ H ∩ E (A0, b0) and put (Ar , br ) = (

A0, b0 − 1
r A0c

)
,

(
Ãr , b̃r

) =(
A0, b0 + 1

r A0c
)
, for r ∈ N, then (Ar , br ) → (A0, b0) , xr = x0 + 1

r c ∈ E (Ar , br ) , c′xr >

d; (
Ãr , b̃r

) → (A0, b0) and c′x < d for any x in E (
Ãr , b̃r

)
. Therefore E satisfies both

conditions A and B.

Theorem 2.7 Let F ⊂ G stably at (y0, z0) and assume that G (z0) is convex and either F
satisfies condition A or G satisfies condition B. Then F (y0) ⊂ int G (z0).

Proof We assume that F ⊂ G stably at (y0, z0) but F (y0) �⊂ int G (z0). Let x̄ ∈ F (y0)\
int G (z0). Then x̄ ∈ bd G (z0), and so by the supporting hyperplane theorem there exists
w ∈ R

n \{0n} such that

w′ (x − x̄) ≤ 0 for all x ∈ clG (z0).

Since x̄ ∈ F (y0) ⊂ G (z0), the hyperplane

H := {
x ∈ R

n : w′ (x − x̄) = 0
}

also supports F (y0) at x̄ . Put

S := {
x ∈ R

n : w′ (x − x̄) ≤ 0
}
.

We will get a contradiction from both conditions A and B. If A holds, we can take {yr } ⊂
Y, yr → y0, F (yr )\S �= ∅ for all r ∈ N. Since G (z0) ⊂ S, we also have F (yr )\G (z0) �= ∅,
so that F (yr ) �⊂ G (z0) for all r .

Alternatively, if B holds there exists {zr } ⊂ Z , zr → z0, such that G (zr )∩ H = ∅ for all
r . Since x̄ ∈ H , we have x̄ /∈ G (zr ), so that x̄ ∈ F (y0)\G (zr ) and we have F (y0) �⊂ G (zr )

for all r .
In both cases we get a contradiction. 
�
The conclusion F (y0) ⊂ int G (z0) in the previous theorem cannot be replaced by the

stronger one d (F (y0), bd G (z0)) > 0, as the set-valued mappings F and G (both of them
solution set mappings corresponding to parametric systems) in the following simple exam-
ples show. Nonetheless, in the next section we prove this property for semi-infinite systems
under mild assumptions.
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Example 2.8 Let Y = Z = ]0, 1],

F (y) = {
x ∈ R

2 : x1 ≥ 0, x2 ≥ 0, x1x2 ≥ y
}
,

G (z) = {
x ∈ R

2 : x1 ≥ 0, x2 ≥ 0
}
(constant) and y0 = z0 = 1. Then F ⊂ G stably at

(y0, z0), condition A is satisfied and F (y0) ⊂ int G (z0) but d (F (y0) , bd G (z0)) = 0.

Example 2.9 Let Y = Z = [0, 1[,

F (y) = {
x ∈ R

2 : x1 ≥ 0, x2 ≥ 0, x1x2 ≥ 1
}

(constant),

G (z) = {
x ∈ R

2 : x1 ≥ 0, x2 ≥ 0, x1x2 ≥ z
}

and y0 = z0 = 0. Then F ⊂ G stably at (y0, z0), condition B holds and F (y0) ⊂ int G (z0),
but once again d (F (y0) , bd G (z0)) = 0.

3 Solution sets of systems

Throughout this section we consider two given (nominal) systems y0 = {
f 0
t (x) ≤ 0, t ∈ T

}

and z0 = {
g0

t (x) ≤ 0, s ∈ S
}

with corresponding spaces of parameters, denoted by Y and
Z in the general case, by YC and ZC if y0 and z0 are convex systems and by YL and ZL if
y0 and z0 are linear systems. F and G are the feasible set mappings, i.e., F (y) and G (z) are
the solution sets of y = { ft (x) ≤ 0, t ∈ T } and z = {gt (x) ≤ 0, s ∈ S}, respectively.

In the case of linear systems y0 = {(a0
t )′x ≤ b0

t , t ∈ T } and z0 = {(c0
s )

′x ≤ d0
s , s ∈ S},

where the index sets T and S are arbitrary and a0
t , c0

s ∈ R
n, b0

t , d0
s ∈ R for all t ∈ T and

for all s ∈ S. We denote by YL the class of all the linear systems of the form y = {(at )
′x ≤

bt , t ∈ T }, (i.e., those linear systems which have the same space of variables, R
n , and the

same index set, T ). We consider in YL the topology of the uniform convergence on T given
by the pseudometric

ρYL (y1, y2) := sup
t∈T

∥∥∥∥∥

(
a1

t

b1
t

)
−

(
a2

t

b2
t

)∥∥∥∥∥∞
,

for yi = {(ai
t )

′x ≤ b i
t , t ∈ T } ∈ YL i = 1, 2.

If y0 = {
f 0
t (x) ≤ 0, t ∈ T

}
is convex, we associate with y0 the space YC of all the convex

systems of the form y = { ft (x) ≤ 0, t ∈ T }, with ft : R
n → R convex for all t ∈ T . As in

[9], we define a pseudometric ρYC as follows: given yi = {
f i
t (x) ≤ 0, t ∈ T

} ∈ YC i = 1, 2,

ρYC (y1, y2) := sup
t∈T

δ
(

f 1
t , f 2

t

)
, (3.1)

where

δ
(

f 1
t , f 2

t

) :=
∞∑

k=1

2−k δk
(

f 1
t , f 2

t

)

1 + δk
(

f 1
t , f 2

t
) ,

with

δk
(

f 1
t , f 2

t

) := sup
‖x‖≤k

∣∣ f 1
t (x) − f 2

t (x)
∣∣ , k = 1, 2, . . . .
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If a sequence {yr } ⊂ YC satisfies yr → y0, with yr = {
f r
t (x) ≤ 0, t ∈ T

} ∈ YC r =
1, 2, . . ., then for all x ∈ R

n, f r· (x) → f 0· (x) uniformly on T . Moreover f r
t → f 0

t uni-
formly over compact sets in R

n because of the convexity of the functions f r
t and f 0

t . It is
easy to prove that the topology induced by ρYC on YL coincides with the topology associated
with the pseudometric of the uniform convergence on T given by dYL .

In the general case, y0 = {
f 0
t (x) ≤ 0, t ∈ T

}
, the index set T is arbitrary and the functions

to be considered, f 0
t : R

n → R, are bounded over bounded sets (not necessarily convex func-
tions). We associate with y0 the space Y of all the systems of the form y = { ft (x) ≤ 0, t ∈ T },
where ft : R

n → R is any function bounded over bounded sets, for each t ∈ T . Finally, we
consider in Y the topology induced by the pseudometric ρY defined in the same way as for
the space YC , see (3.1).

The topology of YL is the topology induced YC and the topology of YC is the one induced
by Y . These facts yield that all the sufficient conditions for the stability properties of multi-
valued mappings defined on YC (Y ) are inherited by their restrictions to YL (YC ). Nonetheless,
the necessary conditions may require a direct argument. We represent by F the feasible set
mapping for YL or YC or Y in either case.

In a similar way, the space of parameters associated with z0, ZL or ZC or Z , is equipped
with the pseudometric dZL or ρZC or ρZ , respectively.

The following two remarks illustrate conditions A and B in the case of inequality systems:

Remark 3.1 If y0 = {
f 0
t (x) ≤ 0, t ∈ T

}
is a system such that F (y0) is convex and the fam-

ily of function constraints,
{

f 0
t , t ∈ T

}
, is equilipschitzian, then F satisfies the condition A.

Indeed, if S is any closed half-space ω′ (x − u) ≤ 0 such that ‖ω‖ = 1, u ∈ bd F (y0) and
F (y0) ⊂ S, the sequence {yr } ⊂ Y ,

yr :=
{

f 0
t

(
x − ω

r

)
≤ 0, t ∈ T

}
, r ∈ N, (3.2)

verifies that yr → y0 and

F (yr ) \ S �= ∅ for all r ∈ N,

because xr := u + ω
r ∈ F (yr ) and

ω′ (xr − u) = ω′ (u + ω

r
− u

)
= 1

r
‖ω‖2 = 1

r
> 0,

so xr /∈ S.
Observe that for a convex system

{
f 0
t (x) ≤ 0, t ∈ T

}
, the family of the function con-

straints is equilipschitzian whenever the set of all the corresponding subgradients is bounded
because, if M > 0 satisfies that ∪t∈T ∂ f 0

t (Rn) ⊂ B(0n; M), then the inequality

f 0
t (x1) − f 0

t (x2) ≥ u′
t (x1 − x2) ≥ −M ‖x1 − x2‖,

for any x1, x2 ∈ R
n (here ut is a subgradient of f 0

t at x2), yields that
∣∣ f 0

t (x1) − f 0
t (x2)

∣∣ ≤ M ‖x1 − x2‖ .

Remark 3.2 G satisfies condition B when z0 = {
g0

t (x) ≤ 0, t ∈ T
} {

g0
t , s ∈ S

}
is an equi-

lipschitzian family and G (z0) is convex. To see this, let H be any supporting hyperplane
to G (z0). Let ω′ (x − v) = 0 be the equation of H , with ‖ω‖ = 1, v ∈ bd G (z0) and
ω′ (x − v) ≤ 0 for all x ∈ G (z0). Then the sequence {zr } ⊂ Z ,

zr :=
{

g0
s

(
x + ω

r

)
≤ 0, s ∈ S

}
, r ∈ N, (3.3)
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satisfies zr → z0 and G (z0) = ω
r + G (zr ). Thus

x ∈ G (zr ) ⇒ x + ω

r
∈ G (z0),

which implies that ω′ (x + ω
r − v

) ≤ 0, so that

ω′ (x − v) ≤ −1

r
‖ω‖2 < 0.

Hence

G (zr ) ∩ H = ∅ for all r ∈ N.

Therefore, G satisfies condition B.

Now, we will start with the general case. For non-convex systems it is not possible to relax
the assumptions in Theorem 2.2. To get some necessary conditions we could have applied
Theorem 2.7, but we prefer for practical uses to replace assumptions A and B by some con-
ditions easier to verify, getting the stronger necessary condition d (F (y0) , bd G (z0)) > 0,
which is not true in general as Examples 2.8 and 2.9 show.

Theorem 3.3 Let (y0, z0) ∈ Y × Z be such that G (z0) is convex and at least one of the two
families of function constraints,

{
f 0
t , t ∈ T

}
and

{
g0

s , s ∈ S
}
, is equilipschitzian. If F ⊂ G

stably at (y0, z0), then d (F (y0), bd G (z0)) > 0 (and so, F (y0) ⊂ int G (z0)).

Proof Assume that there exists M > 0 such that
∣∣ f 0

t (x1) − f 0
t (x2)

∣∣ ≤ M ‖x1 − x2‖,
for all x1, x2 ∈ R

n . Take δ > 0 such that F (y) ⊂ G (z) for any (y, z) ∈ Y × Z with
ρY (y, y0) < δ and ρZ (z, z0) < δ. We will use the fact (proved below, at the end) that if
w ∈ R

n and y = {
f 0
t (x − w) ≤ 0, t ∈ T

}
then

ρY (y, y0) ≤ M ‖w‖
1 + M ‖w‖ . (3.4)

In particular, for any ω ∈ R
n, ‖ω‖ = 1, if yr := {

f 0
t

(
x − ω

r

) ≤ 0, t ∈ T
}
, r ∈ N, we get

ρY (yr , y0) ≤ M
∥∥ω

r

∥∥

1 + M
∥∥ω

r

∥∥ = M

r + M
.

Take r0 ∈ N such that M
r0+M <δ and let ε = 1

2r0
>ε. Suppose that the distance d(F (y0),

bd G (z0)) = 0. Consider u ∈ F (y0) and v ∈ bd G (z0) such that ‖u − v‖ < ε. By the
supporting hyperplane theorem we can choose some ω ∈ R

n, ‖ω‖ = 1, such that

ω′(x − v) ≤ 0 for all x ∈ G (z0) . (3.5)

For yr0 we have that ρY
(
yr0 , y0

)
< δ, and so F (

yr0

) ⊂ G (z0) by the choice of δ. Since
F (

yr0

) = F (y0) + ω
r0

and u ∈ F (y0), it follows that u + ω
r0

∈ G (z0). Then, by (3.5),

0 ≥ ω′
(

u + ω

r0
− v

)
= 1

r0
‖ω‖2 + ω′ (u − v) ≥ 1

r0
− ‖u − v‖ >

1

r0
− ε = 1

2r0
> 0,

a contradiction. Therefore it must be that d (F (y0), bd G (z0)) > 0.
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In case the equilipschitzian family is the one corresponding to the mapping G, the
result follows in the same fashion as above by considering the sequence given by zr :={
g0

s

(
x + ω

r

) ≤ 0, s ∈ S
}
.

To finish the proof we only need to show the assertion (3.4). For any k ∈ N,

δk
(

f 0
t (·), f 0

t (· − w)
) := max‖x‖≤k

∣
∣ f 0

t (x) − f 0
t (x − w)

∣
∣ ≤ M ‖w‖ .

Since the function s �→ s
1+s is increasing on R+, for any t ∈ T , we have

δ
(

f 0
t (·), f 0

t (· − w)
) :=

∞∑

k=1

2−k δk
(

f 0
t (·), f 0

t (· − w)
)

1 + δk
(

f 0
t (·), f 0

t (· − w)
)

≤
∞∑

k=1

2−k M ‖w‖
1 + M ‖w‖

= M ‖w‖
1 + M ‖w‖ ,

so that

ρY (y, y0) := sup
t∈T

δ
(

f 0
t (·), f 0

t (· − w)
) ≤ M ‖w‖

1 + M ‖w‖ .

This completes the proof. 
�
Theorem 3.4 Let y0 and z0 be convex systems such that F (y0) �= ∅. Then the following
statements hold:

(i) If F (y0) ⊂ int G (z0), G is lsc at z0, and G, (z0) is bounded, then F ⊂ G stably at
(y0, z0).

(ii) If F ⊂ G stably at (y0, z0) and the set of subgradients of the function constraints is
bounded for at least one of them, then d (F (y0), bd G (z0)) > 0 and G is lsc at z0.

Proof

(i) Since F (y0) and G (z0) are bounded, F and G are usc at y0 and z0, respectively. The
conclusion follows from Corollary 2.3.

(ii) The argument to show that d (F (y0) , bd G (z0)) > 0 is the same as in the previous
theorem. To prove that G is lsc at z0, we use the fact that for convex systems the lower
semicontinuity property at a consistent system is equivalent to the stability with respect
to the consistency [9, Theorem 4.1]. Now, z0 is in the interior of the domain of G
because, by the assumptions, ∅ �= F (y0)⊂ G (z) for any z closed enough to z0, hence
G is lsc at z0. 
�

Different characterizations of the lsc property of G at z0 that can be checked in terms of
the data have been given in [9]. For ordinary (finite) systems the boundedness condition in
(ii) can be replaced by the lipschitzian property of the function constraints of any one of the
involved systems.

The event of the family of the function constraints of the linear system
{
a′

t x ≤ bt , t ∈ T }
is even easier because

∥∥(
a′

t x1 − bt
) − (

a′
t x2 − bt

)∥∥ ≤ ‖at‖ ‖x1 − x2‖ ≤ M ‖x1 − x2‖,
if ‖at‖ ≤ M for all t ∈ T . Hence, together with Corollary 2.3, we get the following result
for linear systems ([5, Proposition 4.1]):
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Theorem 3.5 Let y0 and z0 be linear systems such that F (y0) �= ∅. Then the following
statements hold:

(i) If F (y0) ⊂ int G (z0), G is lsc at z0 and G (z0) is bounded, then F ⊂ G stably at (y0, z0).
(ii) If F ⊂ G stably at (y0, z0) and the set of gradients of either y0 or z0 is bounded, then

F (y0) ⊂ int G (z0) and G is lsc at z0.

In LSISs, the boundedness of G (z0) in (i) can be replaced by the weaker characterization
of the usc property of G that can be found in [3], with the inconvenient that this property is
not inherited by F and, moreover, it can hardly be checked in practice. In the particular case
that z0 is an ordinary linear system, G is lsc at z0 if and only if the Slater condition holds and
it is usc at z0 if and only if G (z0) is either bounded or the whole space R

n .

Corollary 3.6 Let y0 and z0 be ordinary linear systems such that F (y0) �= ∅. Then the
following statements hold:
(i) If F (y0) ⊂ int G (z0) and G is continuous at z0, then F ⊂ G stably at (y0, z0).

(ii) If F ⊂ G stably at (y0, z0), then F (y0) ⊂ int G (z0) and G is lsc at z0.

We have assumed in this section that y0 and z0 are systems of the same class. However,
analogous results for mixed combinations can be obtained in a similar way.
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